"Dissemination of Education for Knowledge, Science and Culture" -Shikshanmaharshi Dr. Bapuji Salunkhe Shri Swami Vivekanand Shikshan Sanstha Kolhapur's RAJE RAMRAO MAHAVIDYALAYA, JATH DEPARTMENT OF BCA Mathematical Foundations for Computer Applications <u>Question Bank</u>

Q. Choose a correct alternative.

Q.1. A Collection of well defined object is called a) set b) empty set c) finite set Q.2. If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, then A U B =		d)infinite set		
a){1, 4, 5, 3} Q.3 .If $ A = 0$, then the matrix a i	b){ 3, 4}	c){1, 2, 3, 4, 5, 6}	d){1, 2, 3, 4}	
a)non- singular	b)singular	c)symmetric	d)skew- symmetric	
Q.4. A set containing no element a)Finite	b)singleton	c)Empty	d)subset	
Q.5. If A is subset of B, then A U a)A' Q.6. If A={1, 2}, then n(A X A	b)B	c)Both	d)none of these	
a)1 Q.7. If A' = A, then A is called	b)2	c)3	d)4	
A)non- singular Q.8. A set containing one elem	b)skew- symmetric	c)symmetric	d)singular	
a)non- singular Q.9 Which of the following is sta	b)skew- symmetric	c)symmetric	d)singular	
a)Please, give your pen.	b)What is your name?	c)Sit down.	d)sun rises in east.	
Q.10. If p: 2 is even number, q: 3 is an odd number, then pvq:				
a) 2 is even number and 3 is an odd number	b)2 is even number or 3 is an odd number	c) If 2 is even number, then 3 is an odd number	d)2 is even number if and only if 3 is an odd number	
Q.12. The negation of the statement " Price increases" is				
a)Price increases	b)Price is not increases	c)Price are not increases	d) Price does not increases	
Q.13. Which of the following methods are used to represent the sets?				
a)Venn Diagramm	b)Roster Method	c)Set-Builder method	d)all of these	
Q.14. The truth value of "Tirupat a)T	b)F	c)Both	d)can not say	
Q.15 . The converse of " If $2+3 < 5$		c)If 5< 2, then	d)If 5 > 2, then	
a)If 2+3 < 5, then 5 >2	b) If 2+3 > 5, then 5 > 2	2+3 >5	2+3 < 5	
Q.16. The truth value of pvq is				
a)T, T, F, F	b)T, F, F, F	c)T, T, F, T	d)T, T, T, F	
Q.17. The complement of a set is a)A'	b)U	c)X	d)A	

Q.18. $p v (q v r) = (p v q) v r$ is called as					
a)Associative law	b)Distributive law	c)identity law	d)De-Morgan's Iaw		
Q.19. Which of the following a a)modus ponens Q.20. a matrix [2 4 6 8] is cal	b)modus tollens	c)generalization	d)all of these		
a)column matrix	b)null matrix	c)row matrix	d)identity matrix		
Q.21. State the order of matrix a)2*3	x C = [1 2 3]. b)3*2	c)1*3	d)3*1		
	umbers enclosed by a pair of bra				
a)row	b)matrix	c)column	d)determinant		
Q.23. A diagonal matrix whose all elements are equal is called a					
a)square	b)null	c)scalar	d)row		
Q.24. If A={x, y, z, w} and B= a)column matrix	= {y, z, u, v}, then A - B= b){y, z}	 c){x, z}	d){x, y}		
-	e column is called ma				
a)column matrix	b){y, z}	c){x, z}	d){x, y}		
0.26 If [1, 2, 2, 4] then $ A =$					
Q.26. If [1, 2; 3, 4], then A = a)2	b)-2	c)3	d)0		
-	nentary transformations used in	matrices are			
a)3	b)6	c)9	d)4		
Q.28.A vertex with odd degree is called					
a)vertex	b)odd vertex	c)even vertex	d)isolated vertex		
Q.29.A vertex of a degree zero	is called				
a)vertex	b)odd vertex	c)even vertex	d)isolated vertex		
Q.30.A vertex with degree one is called					
a)vertex	b)odd vertex	c)even vertex	d)isolated vertex		
Q.31.A vertex with even degree is called					
a)vertex vertex	b)odd vertex	c)even vertex	d)isolated		
Q.32. Every conditional statement is equivalent to					
a)its contrapositive b)it	ts invers c)its convers	d)only itself			
Q.33.which of the following is a statement					
a)open the door b)do your home work c)switch on the fan d)two plus two is four					
Q.34.which of following is a statement in logic					
a) go away b) how beautiful c) $x>5$ d) $2=3$					
Q.35. $p \land p \equiv p$. and $p \lor p \equiv$	p is				

a)commutative law b)identity law c)idempotent law d) cont			
dional law			
Q.36. $pVq\equiv qVp$ and $p\Lambda q\equiv q\Lambda p$			
a)commutative law b)identity law c)idempotent law d) cont			
dional law			
$Q.37.p\Lambda(q\Lambda r) \equiv (p\Lambda q)\Lambda r$			
a)commutative law b)identity law c)associative law d) cont			
dional law			
Q.38. $p\Lambda(qVr) \equiv (p\Lambda q)V(p\Lambda r)$			
a) Commutative law b) distributive law c) associative law d) conditional law			
Q.39. $p\Lambda T \equiv p p\Lambda F \equiv F$			
a) commutative law b)identity law c)associative law d) conditional law			
Q.40. $pV(p\land q)\equiv p,p\land (p\lor q)\equiv p$			
a) commutative law b)identity law c)associative law d) absorption law			
Q.41. if pAq is false and pVq is true, the is not true			
a) pVq b) $p \leftrightarrow q$ c) $\sim pV \sim q$ d) $qV \sim p$			
Q.42. Empty set is			
a) finite set b) infinite set c)proper set d) power set			
Q.43. a set containing uncountable elements is called			
a) finite set b) infinite set c)proper set d) power set			
Q.44. a set containing no elements is called			
a) Finite set b) infinite set c)empty set d) power set			
Q.45. a set containing only one element is called			
a) Finite set b) infinite set c) proper set d) singletone set			
Q46. a set containing an countable element is called			
a)finite set b) infinite set c)proper set d) power set			
Q.47. a set containing an uncountable element is called			
a)finite set b) infinite set c)proper set d) power set			
Q.48.which of the following is a statement			
a)open the door b)do your home work c)switch on the fan d)two plus two is four			

Q.49. $pVq\equiv qVp$ and $p\Lambda q\equiv q\Lambda p$

a)commutative law b)identity law c)idempotent law d) conditional law

Q.50.a set of all subset of agiven set is

a)finite set b) infinite set c)proper set d) power set

Q.2 Short answer question

Q.1.Describe the following sets in roster form

a) A ={x/x a letter of word "MOVEMENT" }

b) B ={x/x is an natural number 5<x<9}

Q.2. write down the following sets in set builder form

a) {10,20,30,40,50}

b) { a,e,i,o,u }

c) {Sunday,Monday,Tuesday,wednsday,Thursday,Friday Saturday}

Q.3. A ={1,2,3,4,5} ,B={3,4,5} find

(AUB) ,(A \cap B) ,A^C , (AUB)^C

Q.4. A={1,3,5,7,9},B={4,5,6} Find

A^C ,(AUB) ,(AUB)^C

Q.5.X= $\{1,2,3,4,5,6,7,8,\}$, Y= $\{2,4,6,8\}$ Find - (XUY), (X \cap Y), (XUY)^C

Q.6. Using truthtable solve

(p∧q)V(p→q)

Q.7. Using truthtable solve

(pVp)Λ(rΛP)

Q.8. Using truthtable sove

(pVq)∧(qVr)

Q.9. using truth table

(p∧q)→r

Q.10. using truth table

(p∧r)↔(q∧r)

Q.3 Broad answer question

Q.1. Using truth table , examine tautology, or contradiction or contingency

 $[(p\Lambda q)\rightarrow (\sim pV\sim q)]$

Q.2. Using truth table ,examine tautology,or contradiction or contingency

 $[(p \land \sim q \lor r) \rightarrow (p \lor \sim q \land r)]$

Q.3. Using truth table ,examine tautology,or contradiction or contingency

 $(p \leftrightarrow q) \equiv (p \land q) \lor (\sim p \land \sim q)$

Q.4. Using truth table ,examine tautology,or contradiction or contingency

 $(p \land q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$

Q.5. Using truth table ,examine tautology,or contradiction or contingency

 $p \rightarrow (qVr) \equiv (p \rightarrow q)V(p \rightarrow r)$

- Q.6 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ find A invese, by row methode
- Q.7. $A = \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$ then A inverse by adjoint methode

Q.8.if A={1,2,3,4,5,6,7,8,9},B={1,3,5},c={4,5}

Find (AUBUC),

 $(AUB)^{C}$, $(AUB)^{C}$, $(B\cap C)^{C}$

Q.9. IF X ={2,4,6,8,10,12,14},Y={4,6,8} then find (XUY) X^{c} , (XUY)^c

Q.10. Definition of even vertex, odd vertex, isolated vertex, pendent vertex,

Q.11.define simple graph, direct graph , ends points, isolated

Q.12. Using truth table ,examine tautology,or contradiction or contingency

 $[(pVq)Vr] \leftrightarrow [pV(qVr)]$

Q.13.find the inverse of A= $\begin{bmatrix} 3 & 1 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$ by using elementary row transformation

Q.14.find the inverse of A= $\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ by elementary column transformation

Q.15. . Using truth table ,examine tautology,or contradiction or contingency

 $(p \rightarrow q) \land [(q \rightarrow r) \rightarrow (p \rightarrow r)]$

Q.4 SHORT ANSWER NOTES

 $P \rightarrow (q \rightarrow p)$

Q.2. Construct truth table

 $(\sim p \lor q) \leftrightarrow \sim (p \land q)$

Q.3. Construct truth table

~(~pA~q)Vq

Q.4. if
$$\begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix}$$
 apply transformation (R1 \leftrightarrow R2)

Q.5.if A= $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{bmatrix}$

 $\begin{bmatrix} 2 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ s ,apply the transformation R1 \leftrightarrow R2 and then C1 \rightarrow C1+2C3

Q.6. using truth table show that logical equivalence

~ p∧q≡(pVq)∧~p

Q.7. . using truth table show that logical equivalence

~(p∧q)V(~p∧q)≡~p

Q.8.construct truth table

 $(p\Lambda q)\Lambda(\sim pV\sim q)$

Q.9.construct truth table

 $[p \land (p \rightarrow \sim q)] \rightarrow p$

Q.10.A={3,4,5,6,8,9,} and B={5,6} Find

 $A^{C,}$ (AUB), (AUB)^C, (A \cap B)^C

Q.11. $p=\{a,b,c,d,e,f,g\},Q=\{c,d,e\},then find$

```
P^{c},Q^{C},(PUQ),(PUQ)^{C},(P\cap Q)
```

Q.12. X={1,2,3,4,5,6,7,8,9},Y={3,4,5} and Z={8,9} Then find

(XUYUZ),(YUZ),(XUY)^c,(YUZ)^c,(XUZ)

Q.13. Construct truth table

(p→q)V(p→r)

Q.14. define simple graph, multi graph, null graph

Q.15.define even vertex,odd vertex,isolated vertex,pendent vertex

Q.16. applA=
$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 3 & 4 \end{bmatrix}$$
 transformation C1 \rightarrow C1+2C3

Q.17.A=
$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & -2 & 5 \end{bmatrix}$$
 Aapply R1 \leftrightarrow R2 and then C1 \rightarrow C1+2C3

Q.18. A=
$$\begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix}$$
 apply C3+2C2 and 3R3

Q.19. Construct truth table

 $[(p\Lambda q)Vr]\Lambda[\sim rV(p\Lambda q)]$

Q.20. Construct truth table

 $[(\sim pVq)\Lambda(q \rightarrow r)] \rightarrow (p \rightarrow r)$